电话:0818-7272226
您当前的位置:首页 > 职场资讯 > 高中数学

数学思想在计数与概率中的应用

来源:达州家教网 时间:2024-12-03 作者:达州家教网 浏览量:

北师大天津附中 潘长虹老师

  例3:甲、乙、丙3人各进行1次射击,如果甲、乙2人击中目标的概率0.8,丙击中目标的概率是0.6,计算:

  (1)恰有2人击中目标的概率;

  (2)恰有1人击中目标的概率。

  分析:甲、乙、丙3人各射击一次,击中目标分别为事件a、b、c,a、b、c为相互独立事件,恰有2人击a·b·c a·b·c a·b·c中,有3类情形:分别发生,而3种事件又互斥。

  解:(1)p(a·b·c) p(a·b·c) p(a·b·c)

  =p(a)·p(b)·p(c) p(a)·p(b)·p(c)+p(a)·p(b)·p(c)

  =0.8×0.8×0.4+0.8×0.2×0.6+0.2×0.8×0.6

  =0.448

  同理:(2)解法亦同(1)即p(a·b·c) p(a·b·c) p(a·b·c)=0.152

  评述:分类思想:当对问题的整体研究有困难时,转而研究其各个局部,通过对各个局部的研究,完成对整体的研究。概率中等可能事件基本事件的结果数、互斥事件有一个发生的概率经常涉及分类的问题。此题的关键是理解甲、乙、丙三人独立,所求两种事件中的各3种事件又互斥,利用分类的思想去解决,注意分类要全面,不重不漏。

  例4:甲、乙二人参加普法知识竞赛,共有10个不同的题目,其中选择题6个,判断题4个,甲、乙二人依次各抽一题

  (ⅰ)甲抽到选择题,乙抽到判断题的概率为多少?

  (ⅱ)甲乙二人中至少有一个抽到选择题的概率是多少?

  分析:此题考查等可能事件的概率,以及分析解决应用问题的能力,解等可能事件的概率的步骤是:

  (1)"一次试验"可能的结果数n是多少?

  (2)"事件a"的结果数m是多少?

  (3)"事件a"的概率f(a)=-是什么?

  解:(ⅰ)"甲乙二人依次从10个题目中各抽一题"的基本事件数为:c101c91

  而"甲抽到选择题,乙抽到判断题"这个事件所含的基本数为:c61c41

  ∴ "甲抽到选择题,乙抽到判断

  题"的概率为:p=-=-

  (ⅱ)因甲乙二人都没有抽到选择题的概率为:-

  ∴甲乙二人中至少有一人抽到选择题的概率为:1--=1--=-

  评述:变抽象为具体,熟练掌握数学模型(即古典概型),抓好"操作",面对问题,具体排一排,选一选。

微信扫一扫分享资讯
相关推荐
暂无相关推荐
微信公众号
手机浏览

Copyright C 2008-2014 All Rights Reserved 版权所有 达州百年升学教育咨询有限公司 蜀ICP备12049413号-3

地址:达州市西外镇金龙大道信德观天下C区三楼 EMAIL:17305259@qq.com

Powered by PHPYun.

用微信扫一扫